Consideraciones sobre artroscopia

H. Ikeuchi, M. D.
Director del Instituto I. K. de Arthroscopia

Se exponen consideraciones cuyo propósito es el de lograr mejores resultados que los obtenidos, hasta el momento, en la artroscopia de la rodilla. En lo que atañe a los arroscopios y las videocámaras, se presentan y explican el arroscopio sin distorsión, el sistema de lentes telescopicas de magnificación y el sistema de televisión de alta definición. En cuanto a la artroscopia diagnóstica de la rodilla, se exponen y comentan ejemplos de desgarro del ligamento coranal posterior, de una plica de gran tamaño, de cambios en la superficie anterior del cóndilo femoral medial y de vasos sanguíneos en la membrana sinovial.

Palabras clave: Aberración esférica, sistema de TV de alta definición, ligamento coranal posterior, plica y menisco discoides.

Key words: Spherical aberration, high-definition TV system, posterior coronary ligament, trirbital shelf and discoid meniscus.

Regarding arthroscopy. Considerations for achieving better results than previously in knee arthroscopy are briefly described. As regards the arthroscopes and videocameras, the non-distortion arthroscope, the magnifying telescope lens system and the high-definition TV system are explained. In the context of diagnostic arthroscopy of the knee joint, examples are presented and discussed of a tear of the posterior coronary ligament, a huge shelf, changes in the anterior surface of the medial femoral condylus and blood vessels in the synovial membrane.

Algunos de los arroscopios iniciales mostraban imágenes con un importante predominio del amarillo; otros tendían hacia tonalidades azules. Sin embargo, los arroscopios actuales no muestran diferencias tan acusadas en la aberración cromática, ya que ésta ha sido corregida. En el curso del desarrollo del Seifoscope, la corrección de la aberración cromática fue un problema complejo.

Aberración esférica

La aberración esférica reviste una importancia mucho mayor a la hora de obtener imágenes reales para conseguir resultados excepcionales en cirugía artroscópica. La Figura 1 presenta, la comparación entre la imagen obtenida a través de un arroscopio con distorsión (Figura 1A, arroscopio ordinario de nuestros días) y otro sin ella (Figura 1B) para líneas paralelas.

En la artroscopia, resulta difícil percibir las curvaturas reales, debido a la aberración esférica de los arroscopios con distorsión. Cuando una imagen se observa y se representa desde el lado cóncavo de un arco de círculo, las curvaturas cóncavas parecen muy próximas a la horizontal. En artroscopia, el radio de la circunferencia de un reborde interno del segmento posterior del menisco parece mayor que la constante circular verdadera, obtenida en estudios anatómicos. Si una curvatura convesa se observa con un arroscopio de distorsión desde el lado convexo de la curva, su convexidad se acentuará. Dicho de otra manera, la constante circular de la convexidad parece menor de lo que es en realidad.

Figura 1A. Esta imagen distorsionada se fotografió a través de un arroscopio ordinario (arroscopio de distorsión) en agua. El instrumento era de visión frontal con un agujal de campo de 120°. La fotografía se realizó a una distancia de 20 mm y a una altura de 30 mm.

Figura 1B. Esta imagen se tomó con un arroscopio sin distorsión de características similares, siendo las condiciones y distancias las mismas.

Sin embargo, si se observan los meniscos o los cuerpos libres intrarticulares con un arroscopio de distorsión, el imagen obtenida tendrá un aspecto de relieve estereoscópico mucho mayor que la que se obtiene con un arroscopio sin distorsión.

Estereartoartoscopia o artroscopia tridimensional

La aberración esférica se ha podido corregir y se ha desarrollado, como se ha mencionado más arriba, arroscopios que carecen de ella. Sin embargo, sigue constituyendo un problema la magnificación relacionada con la distancia entre la punta -el objetivo- del arroscopio y el objeto observado.

El corregir la magnificación del arroscopio sin distorsión parece necesitar mucho más tiempo que el necesario para la corrección de la aberración esférica. Como consecuencia de esto, se ha desarrollado un estereartoartoscopio, pero éste no ha llegado todavía a la etapa de uso clínico, debido a que algunos de sus componentes no han recibido todavía la aprobación del Ministerio de Sanidad del gobierno del Japón.

Arroscopios de magnificación

En 1985, y durante la reunión de la Asociación Americana de Medicina del Deporte, Dillworth-Cannon presentó una grabación en video del aporte sanguíneo al menisco, recogida con un arroscopio de magnificación, al hablar de las indicaciones de la meniscocaruta. En Japón,
Se exponen consideraciones cuyo propósito es el de lograr mejores resultados que los obtenidos, hasta el momento, en la arthroscopia de la rodilla. En lo que atañe a los arrotoscopios y las video-cámaras, se presentan y explican el arrotoSCOPIO sin distorsión, sistema de lentes telescópicos de magnificación y sistema de televisión de alta definición. En cuanto a la arrotsco-pia diagnóstica de la rodilla, se exponen y comentan ejemplos de desgarro del ligamento coro-nal posterior, de una plicca de gran tamaño, de cambios en la superficie anterior del cóndilo femoral medial y de vasos sanguíneos en la mem-brana sinovial.

Palabras clave: Aberración esférica, sistema de TV de alta definición, ligamento coro-nal posterior, plicca y menisco discoides.

Aberación cromática

En los tiempos iniciales de la arthroscopia, la indicación para una exploración de este tipo se estableció, en la mayor parte de los casos, por un diagnóstico de sinovitis. En acuella época, la aberración cromática era uno de los grandes problemas a la hora de establecer un diagnóstico exacto en función de los cambios de coloración aparentes de la mem-brana sinovial. Estos cambios de color visi-ten una significación importante para cono-cer la patología sinovial.

Algunos de los arrotscopios iniciales mostraban imágenes con un importante predominio del amarillo; otros tendían hacia tonalidades azules. Sin embargo, los arrotscopes actuales no muestran diferencias tan acucias en la aberración cromática, ya que ésta ha sido co-rregida. En el curso del desarrollo del SefioScope, la corrección de la aberración cromática fue un problema complejo.

Aberración esférica

La aberración esférica reviste una importancia mucho mayor a la hora de obtener imágenes reales para conseguir resultados exce-ros en cirugía arrotscópica. La Figura 1 presenta, la comparación entre la imagen obtenida a través de un arrotoSCOPIO con distorsión (Figura 1A, arrotscopo ordinario de nuestros días) y otro sin ella (Figura 1B) para líneas paralelas. En la arthroscopia, resulta difícil percibir las curvaturas reales, debido a la aberración esférica de los arrotscopios con distorsión. Cuando una imagen se observa y se representa desde el lado cóncavo de un arco de círculo, las curvaturas cóncavas parecen muy próximas a la hori-zontal. En arrotoSCOPIO, el radio de la cir-cunferencia de un rebordo interno del segu-mento posterior del menisco parece mayor que la constante circular verdadera, obtenida en estudios anatómicos. Si una curvatura con-venía se observa con un arrotscopo de distor-sión desde el lado convexo de la curva, su convexidad se acentuaría. Dicho de otra man-e-ra, la constante circular de la convexidad parece menor de lo que es en realidad.

Sin embargo, si se observan los meniscos o los cuerpos libres intrarticulares con un arrotscopo de distorsión, la imagen obtenida tendrá un aspecto de relleno esterortscópico mucho mayor que la que se obtiene con un arrotscopo sin distorsión,

Estereo-arrotscopia o arrotscopia tridimensional

La aberración esférica se ha podido corregir y se han desarrollado, como se ha mencionado más arriba, arrotscopios que carecen de ella. Sin embargo, sigue constituyendo un proble-ma la magnificación relacionada con la distan-cia entre la punta -el objetivo- del arrotscopo y el objeto observado. El corregir la magnificación del arrotscopo sin distorsión parece necesitar mucho más tiempo que el necesario para la corrección de la aberración esférica. Como consecuencia de esto, se ha desarrollado un estero-arrots-copo, pero éste no ha llegado todavía a la etapa de uso clínico, debido a que algunos de sus componentes no han recibido todavía la aprobación del Ministerio de Sanidad del go-bierno del Japón.

Arrotscopios de magnificación

En 1985 y durante la reunión de la Asociación Americana de Medicina del Deporte, Dillworth-Cannon presentó una grabación en vídeo del aporte sanguíneo al menisco, recogida con un arrotscopo de magnificación, al hablar de las indicaciones de la meniscoscopía. En Japón,
VIDEOCÁMARAS

En 1975, John McIntry desarrolló una video-
cámara monocromática que se adaptaba al ar-
trosco y, posteriormente, Masaki Watanabe desarrolló la videocámara de alta sensibilidad con imagen en color. Desde entonces, los pro-
gresos en estos dispositivos han sido muy rá-
pidos. En el transcurso de muy poco tiempo, las cámaras se presentan con dimensiones muy reducidas y una muy alta calidad. Sin embargo, estas videocámaras en miniatura con un sólo "chip" no mostraban de forma detallada en el monitor la superficial del cartil-
gago articular, debido a los reflejos de la ilumina-
ación del arroscopio. Esto significa que la vi-
sión directa a través del arroscopio, era mejor que las imágenes del cartilage vistas en la pantalla del monitor.

La cámara de TV de alta definición

El 27 de julio de 1990 se aplicó, por primera vez, el sistema de TV de alta definición en la cistoscopía de una meningioma total (sobre un menisco lateral discoido incompleto) en la rodilla izquierda, en el curso del 8º. Seminario de Aortoscopia Operatoria de la Asociación Japonesa de Aortoscopia.

Las imágenes intraoperatorias se proyectaron sobre una pantalla de 5 x 7 m con la ayuda de un video proyector MIC-HDTV (Figura 3). Las imágenes y la superficie se visualizaron en una du-
ces pantallas, de 59 (134,5 cm). Esto hizo pos-
ible que los presentes observaran, de forma simultánea, los aspectos extrínsecos e intrínsecos. Durante la intervención, los espectadores podían

Formular preguntas y discutir la intervención con los cirujanos mientras estaban realizando.

Muchos de los asistentes a esta demos-
tración, comentaron que las imágenes eran tan detalladas que tenían la impresión de estar lle-
vando a cabo la operación ellos mismos. El mérito principal de la aplicación de la tecnol-
gía de TV de alta definición a la cirugía arro-
toscópica es que, aunque se las someta a una magnificación considerable, las imágenes son clara y sus detalles muy precisos.

Las características de la TV de alta definición, en la actualidad, son las siguientes:
- La cámara es grande y de manejo engorroso.
- Se necesita un equipo especial, con los tec-
nicos especialistas correspondientes.

transductor de micro-chip para presión arté-
rial. La presión intraarticular se controla modi-
ficando la altura del sistema de lavado; la rela-
ción se ilustra en la Figura 4. Por lo general, el reservorio del sistema de lavado se mantiene a una altura de 70 cm por encima de la rodilla; en caso de producirse un sangrado intraarticu-
lar, se aumenta la altura del sistema.

Temperatura y pH intraarticulares

La temperatura y el pH se han medido, de forma simultánea, utilizando como sensor el Transistor de Efecto de Campo Sensible a Iones (Ion-Sensitive Field-Effect Transistor, Fig-
ura 5). El transistor tiene 0,5 mm de diámetro y 288 mm de longitud. La escala de medi-
ción es de 0 a 50°C para la temperatura, y entre 0 y 10 para el pH.

Para las mediciones, el transistor se insertó en la cavidad articular a través de la aguja de escape del fluido de lavado, inicialmente, a trá-
vés del acceso suprapectoral lateral; posterior-
mente, y si es necesario abordar los espacios tibiobroemios de la articulación, el transistor se reinsería a través de los accesos infrafacetares (Figura 6). La solución salina del sistema de la-
vido se encuentra a la temperatura ambiente.

Hasta el presente, estas mediciones se han llevado a cabo sólo en cinco artroscopías; debido a esto, se comentarán, exclusivamente, las tendencias de las variaciones.

El pH de la solución salina, vertida en un recipiente, se modifica por efecto del conte-
nido de anhidrido carbónico en el aire am-
biental. Inmediatamente después del vertido desde un frasco previamente cerrado a un re-
cipiente abierto, el pH de la solución salina

- El alquiler o adquisición del equipo repre-
sesta un gasto importante.

En aquel momento, el objetivo real de la aplicación de la TV de alta definición a la ar-
trosco is que se prevé que, en el futuro, la TV de alta definición podré emplearse pa-
ra la transmisión y proyección de imágenes a través de satélites.

Situación actual de las videocámaras

Las videocámaras de pequeñas dimensiones se han hecho muy manejables, tanto por su peso como por su forma y su adaptabilidad al ar-
trosco, y la calidad de los sistemas ha mejorado desde los originales de un sólo "chip" hasta los actuales de tres "chips", con avances en la tec-
nología CCD (charge-coupled device, o dispositi-
vos de acoplamiento por carga).

En el monitor, la imagen de la superficie arti-
cular no muestra ya los antiguos halos debidos a la iluminación. La imagen se está aproximando mucho a las obtenidas mediante sistemas de TV de alta definición. Como resultado, los médi-
cos pueden ya llevar a cabo intervenciones qui-
rúrgicas observando las imágenes en la pantalla del monitor.

CONDICIONES INTRAARTICULARES DURANTE LA CIRUGÍA ARTOSSCOPIA

Presión intraarticular debida a la infusión de solución salina

Se ha medido la presión con la ayuda de un an-
Yoishii Kurikawa ha desarrollado también un arroscopio de magnificación, y presentó una comunicación acerca de máculas de aspecto redondeado en las superficies de los villi.

El autor ha examinado el aporte sanguíneo a los villi y la superficie de la membrana sínica con un arroscopio que disponía de un sistema de lentes telescopiales, intercalado entre el propio arroscopio y la videocámara. La magnificación resultante de la imagen fue de aproximadamente x300 o x400, respecto a las dimensiones reales. Con este sistema fue posible observar las células hemáticas que circulaban por los capilares en la superficie de la membrana sínica. Existen varias formas diferentes de aporte capilar sanguíneo (Figura 2).

VIDEOCAMARAS

En 1975, John McCarty desarrolló una videocámara monocromática que se adaptaba al arroscopio y, posteriormente, Masaki Watanabe desarrolló la videocámara de alta sensibilidad con imagen en color. Desde entonces, los progresos en estos dispositivos han sido muy rápidos. En el transcurso de muy poco tiempo, las cámaras se presentan con dimensiones muy reducidas y una muy alta calidad.

En realidad, estas videocámaras en miniatura con un solo chip no mostraban de forma detallada en el monitor la superficie del cartílago arterial, debido a los reflejos de la iluminación del arroscopio. Esto significa que la visión directa a través del arroscopio, era mejor que las imágenes del cartílago vistas en la pantalla del monitor.

La cámara de TV de alta definición

El 27 de julio de 1990 se aplicó, por primera vez, el sistema de TV de alta definición en la cartografía de una neumosemitoma total (sobre un menisco lateral discoliso incompleto) en la rodilla izquierda, en el curso del 8º Seminario de Arroscopia Operatoria de la Asociación Japonesa de Arroscopia.

Las imágenes intrarteculares se proyectaron sobre una pantalla de 5 x 7 m con la ayuda de un videograbador en formato TV (Figura 3). Las imágenes y las superficies de las imágenes se visualizaron en dos pantallas de 59 (134,5 cm). Esto hizo posible que los presentes observaran, de forma simultánea, los aspectos extrínsecos e intrarticulares. Durante la intervención, los espectadores podían formular preguntas y discutir la intervención con los cirujanos mientras se estaban realizando.

Muchos de los 400 asistentes a esta demostración, comentaron que las imágenes eran tan detalladas que tenían la impresión de estar llevando a cabo la operación ellos mismos. El mérito principal de la aplicación de la tecnología de TV de alta definición a la cirugía arroscópica es que, aunque se las someta a una magnificación considerable, las imágenes son claras y sus detalles muy precisos.

Las desventajas de la TV de alta definición, en la actualidad, son las siguientes:

- La cámara es grande y de manejo engorroso.
- Se necesita un equipo especial, con los técnicos especializados correspondientes.

CONSIDERACIONES SOBRE ARROSCOPIA

- El alquiler o adquisición del equipo representa un gasto importante.
- En aquel momento, el costo real de la aplicación de la TV de alta definición a la arroscopia es que se prevé que, en el futuro, la TV de alta definición podría emplearse para la transmisión y proyección de imágenes a través de satélites.

Situación actual de las videocámaras

Las videocámaras de pequeñas dimensiones se han hecho muy manejables, tanto por su peso como por su forma y su adaptabilidad al arroscopio, y la calidad de los sistemas ha mejorado desde los originales de un solo chip hasta los actuales de tres chips, con avances en la tecnología CCD (charge-coupled device, o dispositivos de acoplamiento por carga).

En el monitor, la imagen de la superficie articular no muestra ya los antiguos halos debidos a la iluminación. La imagen se está aproximando mucho a las obtenidas mediante sistemas de TV de alta definición. Como resultado, los médicos pueden llevar a cabo intervenciones quirúrgicas observando las imágenes en la pantalla del monitor.

CONDICIONES INTRAARTICULARES DURANTE LA CIRUGIA ARROSCOPICA

Presión intrarticular debido a la infusión de solución salina

Se ha medido la presión con la ayuda de un micro-transductor que, en realidad, era un transductor de micro-chip para presión arterial. La presión intrarticular se controla modificando la altura del sistema de lavado; la relación se ilustra en la Figura 4. Por lo general, el reservorio del sistema de lavado se mantiene a una altura de 70 cm por encima de la rodilla; en caso de producirse un sangrado intrarticular, se aumenta la altura del sistema.

Temperatura y pH intrarticares

La temperatura y el pH se han medido, de forma simultánea, utilizando como sensor el Transistor de Efecto de Campo Sensible a Iones (Ion-Sensitive Field-Effect Transistor, Figura 5). El transistor tiene 0.5 mm de diámetro y 208 mm de longitud. La escala de medición es de 0 a 50°C para la temperatura, y entre 0 y 10 para el pH.

Para las mediciones, el transistor se insertó en la cavidad articular a través de la aguja de escape del fluido de lavado, inicialmente, a través del acceso suprapectoral lateral, posteriormente, y si es necesario abordar los espacios tibialoesfemeros de la articulación, el transitor se reinserta a través de los accesos infrapatelares (Figura 6). La solución salina del sistema de lavado se encuentra a una temperatura ambiente.

Hasta el presente, estas mediciones se han llevado a cabo sólo en cinco artroscopias; debido a esto, se comentarán, exclusivamente, las tendencias de las variaciones.

El pH de la solución salina, vertida en un recipiente, se modifica por efecto del contenido de anhidrido carbónico en el aire ambiente. Inmediatamente después del vertido desde un frasco previamente cerrado a un recipiente abierto, el pH de la solución salina...
Figura 6. El ISFET colocado en el compartimento medial de la rodilla izquierda de una mujer de 23 años. La imagen se obtuvo con un arthroscopio sin distorsión con un ángulo de campo visual de 90°.

Figura 7. Temperatura y pH intraarticulares durante la cirugía arthroscópica.

Figura 9. La imagen revela un desgarro del ligamento coronal posterior y otro del segmento posterior del menisco medial, en la rodilla izquierda de un varón de 24 años. En el centro de la imagen se encuentra el segmento posterior del menisco. La flecha señala el desgarro en el ligamento.

Figura 10. Desgarro del ligamento coronal en el biso del tendón poplíteo, entre este y la mezeta tibial de la rodilla izquierda de un varón de 23 años. En la parte inferior de la imagen se encuentra el plátilo tibial lateral en la superior, el menisco lateral, PT: tendón poplíteo, CL: ligamento coronal. La flecha indica el desgarro.

Asimismo, la superficie del cartílago articular se ve expuesta a un pH más bajo que durante la cirugía arthroscópica, ya que el contenido de anhidrido carbónico del aire ambiental influye sobre ella del mismo modo que sobre la solución salina en un recipiente. Esta es una de las diferencias entre la cirugía abierta y la arthroscópica o cerrada. Se apreció un pequeño retrato en el tiempo en la variación del pH y de la temperatura intraarticulares entre el espacio suprapatelar y el espacio articular tiibo-femoral.

ASPECTOS DIAGNÓSTICOS

El hiato del tendón poplíteo

Después de haber examinado el espacio y la bursa suprapatelares, la pared media y la plica si existe, la punta del arthroscopio se desplaza...

Tabla 1. Modificaciones de la solución salina fisiológica expuesta al aire, pH y temperatura de la solución salina de lavado que sale de la cavidad articular.

<table>
<thead>
<tr>
<th>Solución salina</th>
<th>Inmediatamente después de ser dada en un recipiente</th>
<th>10-20 min después</th>
<th>Efflujo de la astringencia de lavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>20,5-22,4</td>
<td>20,8-24,5</td>
<td>22,9-25,0</td>
</tr>
<tr>
<td>pH</td>
<td>7,10-7,27</td>
<td>6,70-6,79</td>
<td>7,24-7,37</td>
</tr>
</tbody>
</table>

Tabla 2. Temperatura y pH en la cavidad articular antes de la inyección de solución salina.

<table>
<thead>
<tr>
<th>Espacio articular</th>
<th>Articulación pato-femoral</th>
<th>Compartimiento medial</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>32,7-33,2</td>
<td>31,5-33</td>
</tr>
<tr>
<td>pH</td>
<td>7,39-7,63</td>
<td>7,35-7,51</td>
</tr>
</tbody>
</table>

Figura 11: el tendón poplíteo parece estar duplicado. Sin embargo, el tejido blanco visible a la izquierda es parte del menisco lateral desgarrado en una rodilla izquierda.

El cartílago articular anterior del cóndilo femoral medial.

De forma ocasional, la superficie del cóndilo femoral medial, situada por debajo de la plica -si ésta existe-, muestra algunos cambios en su superficie. La Figura 12 muestra lo que parece ser un abultamiento en el cartílago; sin embargo, los hallazgos histológicos en el ejido extirpado bajo control visual directo arthroscópico...
CONSIDERACIONES SOBRE ARTROSCOPÍA

Figura 6. El ISFET colocado en el compartimento medial de la rodilla izquierda de una mujer de 23 años. La imagen se obtuvo con un artroscopio sin distorsión con un ángulo de campo visual de 90°.

Figura 7. Temperatura y pH intraarticulares durante la cirugía arthroscópica.

Solución salina

<table>
<thead>
<tr>
<th></th>
<th>Inmediatamente después de verificada en un recipiente</th>
<th>10-20 min después</th>
<th>Eflujo de la aguja de descarga del lavado</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>20,5-22,4</td>
<td>20,8-24,5</td>
<td>22,9-25,0</td>
</tr>
<tr>
<td>pH</td>
<td>7,10-7,27</td>
<td>6,70-6,79</td>
<td>7,24-7,37</td>
</tr>
</tbody>
</table>

Tabla 1. Modificaciones de la solución salina histológica expuesta al aire, pH y temperatura de la solución salina de lavado que sale de la cavidad articular.

fue de 7,10 a 7,27, y su temperatura de 20,5 a 22,4°C. Al cabo de 20 minutos, el pH había cambiado, de 6,70 a 6,79, mientras que la temperatura se había mantenido bastante estable (20,8 a 24,5°C).

La solución salina efusiva de la cavidad articular mostraba un pH entre 7,24 y 7,37, y una temperatura entre 20,9 y 23,5°C (Tabla 1). Antes de iniciarse la intervención propia- mente dicha, las condiciones promedio dentro de la articulación, en el espacio suprapatelar y el espacio articular femoro-patelar, eran de un pH de 7,52 y una temperatura de 32,4°C. Estos parámetros se midieron antes de iniciarse la infusión de lavado con solución salina (Tabla 2). Durante el lavado, el pH intraarticular descendió a 7,35-7,25, pero en el momento de iniciarse el mismo, el pH había mostrado un aumento a 7,46-7,49 (Figura 7).

En la cirugía abierta, la superficie del cartílago articular se ve expuesta a un pH más bajo que durante la cirugía arthroscópica, ya que el contenido de anhidrido carbónico del aire ambiental influye sobre ella del mismo modo que sobre la solución salina en un recipiente. Esta es una de las diferencias entre la cirugía abierta y la arthroscópica o cerrada. Se apreció un pequeño rastro en el tiempo en la variación del pH y de la temperatura intraarticulares entre el espacio suprapatelar y el espacio articular hipo-femoral.

APROXIMACIÓN DIAGNÓSTICA

ASPECTOS DIAGNÓSTICOS

El hiato del tendón poplíteo

Después de haber examinado el espacio y la bursa suprapatelares, la pared media y la píca, si existe, la punta del artroscopio se desplaza para situarla en el espacio lateral, manipulándose la rodilla para disponerla en flexión ligera y varo. Cuando la punta del artroscopio llega al hiato del tendón poplíteo, el instrumento se cambia por el de visión oblicua con un ángulo de 70°. En este momento, en la parte inferior de la imagen (que aquí corresponde a una rodilla derecha) pueden verse el tendón poplíteo y, a la izquierda, el ligamento corona del segmento posterior del menisco lateral.

Si existe un desgarro en el ligamento y, si este desgarro es de una cierta magnitud, podrá verse parte del platótibial. Esta zona puede observarse desde la posición anterior. Si el desgarro es de suficiente tamaño para causar una diseción del segmento posterior del menisco lateral, el diagnóstico puede establecerse mediante palpación con el gancho.

Las Figuras que, a continuación se comentan, muestran algunos ejemplos de imágenes anormales en las inmediaciones del hiato:

- Figura 8: corresponde a un vériz de 24 años de edad, diagnosticado de "alteración interna en la rodilla izquierda". La imagen muestra un desgarro del ligamento corona posterior, en la proximidad del hiato. Puede verse una parte del cóndilo tibial.

- Figura 9: corresponde a la misma situación, entre el menisco lateral y la musela tibial se observa el tendón poplíteo, que parece más largo que en condiciones normales debido al desgarro.

- Figura 10: muestra el desgarro del ligamento corona posterior, entre la tibia y el ligamento, visto a través del abordaje infrapatelar lateral.

- Figura 11: el tendón poplíteo parece estar duplicado. Sin embargo, el tejido blanco visible a la izquierda es del menisco lateral desgarrado en una rodilla izquierda.

El cartílago articular anterior del cóndilo femoral medial

De forma ocasional, la superficie del cóndilo femoral medial, situada por debajo de la píca -si está existente-, muestra algunos cambios en su superficie. La Figura 12 muestra lo que parece ser un abultamiento en el cartílago, sin embargo, los hallazgos histológicos en el eje distal pueden ser un factor que afecta la superficie del cartílago.
revelaron la presencia de tejido sinoval que avanzaba por encima del cartílago.

Es frecuente observar cambios en el cartílago articular de la superficie anterior del cóndilo femoral medial; se ha descubierto que estos cambios pueden deberse a la relación de este cartílago con una plica de grandes dimensiones (Figura 13). Sin embargo, esta zona llega a establecer contacto con el borde exterior del segmento anterior del menisco medial cuando la rodilla se encuentra en extensión completa.

Por tanto, antes de discutir la posible relación entre la plica y el cartílago, hay que recordar que se trata de una parte del límite entre el área de contacto del menisco y su área sin contacto, lo que induce distintos cambios en la superficie.

La plica
La plica de gran tamaño, que se aprecia en la Figura 13, puede ser causa del síndrome hipermóvil. Desde el punto de vista histológico, estas plicas revelan múltiples hallazgos diferentes, incluso dentro de una única plica de grandes dimensiones. Se puede encontrar, por ejemplo, cartílago fibroso, cartílago hialino, etc.

Vasos sanguíneos
El trayecto de los vasos sanguíneos en la sinovial es muy regular, aunque estos vasos pueden hacerse irregulares por efecto del envejecimiento, o debido a un traumatismo o inflación (Figura 14). La hiperemia se comprenderá bien con el estudio de la histología pero, para el diagnóstico final de un trastorno interno de la rodilla, la presencia de un tejido cicatricial parcial es de gran importancia. La cicatriz no contiene tantos vasos, como se ilustra en la Figura 15. Si se observa hiperemia en el ligamento cruzado anterior es esencial proceder a la palpación con alguna sonda, dado que puede existir un desgarro subsinovial (Figura 16). Con el objetivo de comparar y contrastar, la Figura 17 muestra vasos sanguíneos en el ligamento cruzado posterior.

Menisco discoides
La frecuencia del menisco discoides es alta en Japón y en Corea, pero no hay datos al respecto en España. Las Figuras 18 y 19 ilustran un ejemplo de menisco discoides completo.

DISCUSION
¿Cómo puede obtenerse una imagen veraz y real del artroscopio? Esto ha sido un problema considerable durante años. En las etapas iniciales de la arthroscopia era difícil obtener un campo de visión amplio, aunque precisamente
revelaron la presencia de tejido sínovial que avanzaba por encima del cartílago.

Es frecuente observar cambios en el cartílago articular de la superficie anterior del cóndilo femoral medial; se ha discutido si estos cambios podrían deberse a la relación de este cartílago con una plica de grandes dimensiones (Figura 13). Sin embargo, esta zona llega a establecer contacto con el borde exterior del segmento anterior del menisco medial cuando la rodilla se encuentra en extensión completa.

Por tanto, antes de discutir la posible relación entre la plica y el cartílago, hay que recordar que se trata de una parte del límite entre el área de contacto del menisco y su área sin contacto, lo que induce distintos cambios en la superficie.

La plica

La plica de gran tamaño, que se aprecia en la Figura 13, puede ser causa del síndrome hio-iónimo. Desde el punto de vista histológico, estas plicae revelan múltiples hallazgos difíciles, incluso dentro de una única plica de grandes dimensiones. Se puede encontrar, por ejemplo, cartílago fibroso, cartílago hialino, etc.

Vasos sanguíneos

El trayecto de los vasos sanguíneos en la sinovial es muy regular, aunque estos vasos pueden hacerse irregulares por efecto del envejecimiento, o debido a un traumatismo o inflamación (Figura 14). La hiperemicía se comprenderá bien con el estudio de la histología pero, para el diagnóstico final de un trasplante interno de la rodilla, la presencia de un tejido cicatricial parcial es de gran importancia. La cicatriz no contiene tantos vasos, como se ilustra en la Figura 15. Si se observa hiperemia en el ligamento cruzado anterior es esencial proceder a la palpación del mismo con una sonda, dado que puede existir un desgarro subcrural (Figura 16). Con el objetivo de comparar y contrastar, la Figura 17 muestra vasos sanguíneos en el ligamento cruzado posterior.

Menisco discoide

La frecuencia del menisco discoide es alta en Japón y en Corea, pero no hay datos al respecto en España. Las Figuras 18 y 19 ilustran un ejemplo de menisco discoide completo.

DISCUSION

¿Cómo puede obtenerse una imagen veraz y real con el arroscopio? Esto había sido un problema considerable durante años. En las etapas iniciales de la arroscopia era difícil obtener un campo de visión amplio, aunque precisamente...
CONSIDERACIONES SOBRE ARROSTOSCOPIA

la imagen amplia, era una gran ayuda para orientarse dentro de la cavidad articular.

Para evitar causar daños a los tejidos intracapsulares, el diámetro del arroscopio había tenido que reducirse a uno muy pequeño. Sin embargo, en el curso del desarrollo del arroscopio, el Dr. Masaki Watanabe había cambiado su diámetro a otro mayor. Con esto, y en lugar de conseguirse un campo de visión amplio, el arroscopio evidenció una abertura esférica mucho más importante. Del mismo modo, la gran gama de variación en la magnificación de la imagen debida a la distancia entre la extremidad del arroscopio y el objeto observado ha constituido siempre un problema. A la hora de establecer el diagnóstico, aún nos vemos obligados a preguntarnos si estamos viendo a través del arroscopio la imagen verdadera o no. Si la respuesta es negativa, debemos pasar a considerar en cuánto se destaca la imagen que vemos, debido a la aberración esférica, de lo que sería la imagen real.

Además, en las articulaciones existen numerosas variantes anatómicas y, a veces, resulta difícil establecer la diferencia entre la situación verdaderamente patológica y simple variante anatómica. Esto significa que la decisión final de la indicación de una arroscopia ha de establecerse con sumo cuidado. Es entonces cuando obtendremos de la arroscopia una evaluación excelente.

CONCLUSION

Ha sido para mí un gran honor el haber sido invitado a contribuir a la revista de la Asociación Española de Arroscopia, Cuadernos de Arroscopía. Es mi deseo que estas breves consideraciones puedan ser de utilidad para el progreso de la arroscopia de la rodilla.

BIBLIOGRAFÍA

Para conocer la validez clínica de la RMN a nivel de la rodilla se han revisado 100 historias de patología mecánica, en las que se efectuaron un estudio clínico, una RMN y una arroscopia terapéutica. Con la RMN hay 244 diagnósticos, de los que 90 son dudosos (36.8%). Ha habido concordancia de criterios diagnósticos entre la clínica y la arroscopia en el 73%.

Existió correspondencia entre la clínica y la RMN en el 63% de los diagnósticos. La correspondencia entre RMN y arroscopia ha sido especialmente baja, 33% de los diagnósticos. Ha habido diferencias de criterios diagnósticos en el 65% de los casos. Agrupando los tres extremos, en 40 casos la clínica, la RMN y la arroscopia han coincidido. En 22 casos, la arroscopia ha confirmado la clínica, siendo erróneas la interpretación de la RMN y, en 36 casos, la RMN dudaba acerca de esta patología. Con estos resultados, pensamos que la RMN está lejos de aclarar el diagnóstico clínico e induce a error en un 36% de los casos, mientras que en el resto no hace más que confirmar lo que se objetiva con la arroscopia.

Palabras clave: RMN, arroscopia, estudio comparativo.

IRM versus clinic and arthroscopy of the knee. To know the clinical value of IRM in the knee, we have revised 100 mechanical pathology histories. He have realized a clinical study, IRM and arthroscopy and we have correlated the results. We have effected 244 diagnosis of IRM, in which 90 are uncertain (38.8%). There's concordance between clinical and arthroscopy in the 73% and no concordance in the order 27% of the cases.

Between clinical and IRM there's concordance in the 63% of the diagnosis and no concordance in the 37%. Between IRM and arthroscopy, the concordance is especially low (35%). In our study there's coincidence between clinical, IRM and arthroscopy in 40 cases. In 22 cases, the arthroscopy has corroborated the clinical, mistaking in the IRM interpretation. In 36 cases the clinis has corroborated the arthroscopy, while IRM doubt about this pathology.

With these results, we think that the IRM is so far to clarify the clinical diagnosis and induce in the 36% of the cases to mistakes.

Key words: IRM, arthroscopy, comparative study.